Joint Interference Coordination and Load Balancing for OFDMA Multihop Cellular Networks

Abstract

Multihop cellular networks (MCNs) have drawn tremendous attention due to its high throughput and extensive coverage. However, there are still three issues not well addressed. With the existence of relay stations (RSs), how to efficiently allocate frequency resource to relay links becomes a challenging design issue. For mobile stations (MSs) near the cell edge, cochannel interference (CCI) become severe, which significantly affects the network performance.

Furthermore, the unbalanced user distribution will result in traffic congestion and inability to guarantee quality of service (QoS). To address these problems, we propose a quantitative study on adaptive resource allocation schemes by jointly considering interference coordination (IC) and load balancing (LB) in MCNs.

In this paper, we focus on the downlink of OFDMA-based MCNs with time division duplex (TDD) mode, and analyze the characteristics of resource allocation according to IEEE 802.16j/m specification. We also design a novel frequency reuse scheme to mitigate interference and maintain high spectral efficiency, and provide practical LB-based handover mechanisms which can evenly distribute the traffic and guarantee users’ QoS. Joint Interference Coordination and Load Balancing for OFDMA Multihop Cellular Networks

HARDWARE REQUIREMENT:
  • Speed       –    1 GHz
  • Processor      –    Pentium –IV
  • RAM       –    256 MB (min)
  • Hard Disk      –   20 GB
  • Floppy Drive       –    44 MB
  • Key Board      –    Standard Windows Keyboard
  • Mouse       –    Two or Three Button Mouse
  • Monitor      –    SVGA
 SOFTWARE REQUIREMENTS:
  • Operating System        :           Windows XP
  • Front End       :           Microsoft Visual Studio .NET 2008
  • Back End :           MS-SQL Server 2005
  • Document :           MS-Office 2007
EXISTING SYSTEM:

Existing literature, there are several works about reducing CCI in MCNs. In, several static resource allocation schemes with different partitions and reuse factors are discussed. The CCI in these schemes is analyzed in a multicell scenario in a relay-based orthogonal frequency planning strategy is proposed to improve cell edge performance. Fractional frequency reuses (FFR) is extended to MCNs as a compromise solution to reduce CCI while maintaining the sector frequency reuse factor as 1. The minimum CCI has been achieved by adjusting the transmission (Tx) power at BSs and RSs under orthogonal frequency resource allocation. The essence of these works is to use partial frequency bands while maintaining frequency orthogonal at the cell edge and the remaining frequency bands at the cell center.

PROPOSED SYSTEM:

We propose a quantitative study on adaptive resource allocation schemes by jointly considering interference coordination (IC) and load balancing (LB) in MCNs. In this paper, we focus on the downlink of OFDMA-based MCNs with time division duplex (TDD) mode, and analyze the characteristics of resource allocation according to IEEE 802.16j/m specification. We also design a novel frequency reuse scheme to mitigate interference and maintain high spectral efficiency, and provide practical LB-based handover mechanisms which can evenly distribute the traffic and guarantee users’ QoS.

We provide a quantitative study on an adaptive resource allocation scheme by jointly considering IC and LB in MCNs. We also present a novel frequency reuse scheme to mitigate interference and maintain high spectral efficiency, and propose practical LB-based handover mechanisms which can evenly distribute the traffic load and guarantee users’ QoS. Extensive simulations demonstrate that our proposed schemes can provide higher throughput and accommodate more QoS-guaranteed users than what conventional SCNs.

WMNs, the frequency spectrum is shared and randomly contended by all stations. The access scheme with the lowest overhead is optimal. However, for example, in this paper, a centrally controlled optimal resource allocation for OFDMA-based MCNs is our target.

Related Post