Secure and Efficient Data Transmission for Cluster-Based Wireless Sensor Networks

ABSTRACT:

Secure data transmission is a critical issue for wireless sensor networks (WSNs).Clustering is an effective and practical way to enhance the system performance of WSNs. In this paper, we study a secure data transmission for cluster-based WSNs (CWSNs), where the clusters are formed dynamically and periodically. We propose two Secure and Efficient data Transmission (SET) protocols for CWSNs, called SET-IBS and SET-IBOOS, by using the Identity-Based digital Signature (IBS) scheme and the Identity-Based Online/Offline digital Signature (IBOOS) scheme, respectively. In SET-IBS, security relies on the hardness of the Diffie-Hellman problem in the pairing domain. SET-IBOOS further reduces the computational overhead for protocol security, which is crucial for WSNs, while its security relies on the hardness of the discrete logarithm problem. We show the feasibility of the SET-IBS and SET-IBOOS protocols with respect to the security requirements and security analysis against various attacks. The calculations and simulations are provided to] illustrate the efficiency of the proposed protocols. The results show that, the proposed protocols have better performance than the existing secure protocols for CWSNs, in terms of security overhead and energy consumption. Secure and Efficient Data Transmission for Cluster-Based Wireless Sensor Networks

HARDWARE REQUIREMENT:
  • Speed       –    1 GHz
  • Processor     –    Pentium –IV
  • RAM       –    256 MB (min)
  • Hard Disk      –   20 GB
  • Floppy Drive       –    44 MB
  • Key Board      –    Standard Windows Keyboard
  • Mouse       –    Two or Three Button Mouse
  • Monitor      –    SVGA
SOFTWARE REQUIREMENTS:
  • Operating System        :           Windows XP
  • Front End       :           JAVA JDK 1.7
  • Back End :           MYSQL Server
  • Server :           Apache Tomact Server
  • Script :           JSP Script
  • Document :           MS-Office 2007
EXISTING SYSTEM:

LEACH-like protocols is challenging because they dynamically, randomly, and periodically rearrange the network’s clusters and data links providing steady long-lasting node-to-node trust relationships and common key distributions are inadequate for LEACH-like protocols (most existing solutions are provided for distributed WSNs, but not for CWSNs). There are some secure data transmission protocols based on LEACH-like protocols, such as SecLEACH, GS-LEACH and RLEACH. Most of them, however, apply the symmetric key management for security, which suffers from a so-called orphan node problem occurs when a node does not share a pairwise key with others in its preloaded key ring. To mitigate the storage cost of symmetric keys, the key ring in a node is not sufficient for it to share pairwise symmetric keys with all of the nodes in a network. In such a case, it cannot participate in any cluster, and therefore, has to elect itself as a CH. Furthermore, the orphan node problem reduces the possibility of a node joining with a CH, when the number of alive nodes owning pairwise keysdecreases after a long-term operation of the network.

PROPOSED SYSTEM:

Recently, the concept of IBS has been developed as a key management in WSNs for security. Carman first combined the benefits of IBS and key pre distribution set into WSNs, and some papers appeared in IBOOS scheme has been proposed to reduce the computation and storage costs of signature processing. A general method for constructing online/offline signature schemes was introduced IBOOS scheme could be effective for the key management in WSNs. Specifically, the offline phase can be executed on a sensor node or at the BS prior to communication, while the online phase is to be executed during communication.

We propose two Secure and Efficient data Transmission protocols for CWSNs, called SET-IBS and SET-IBOOS, by using the IBS scheme and the IBOOS scheme, respectively. The key idea of both SET-IBS and SET-IBOOS is to authenticate the encrypted sensed data, by applying digital signatures to message packets, which are efficient in communication and applying the key management for security. In the proposed protocols, secret keys and pairing parameters are distributed and preloaded in all sensor nodes by the BS initially, which overcomes the key escrow problem described in ID-based cryptosystems.

Related Post