Mona Secure Multi-Owner Data Sharing for Dynamic Groups in the Cloud

Abstract

With the character of low maintenance, cloud computing provides an economical and efficient solution for sharing group resource among cloud users. Unfortunately, sharing data in a multi-owner manner while preserving data and identity privacy from an untrusted cloud is still a challenging issue, due to the frequent change of the membership. In this paper, we propose a secure multi owner data sharing scheme, named Mona, for dynamic groups in the cloud. By leveraging group signature and dynamic broadcast encryption techniques, any cloud user can anonymously share data with others. Meanwhile, the storage overhead and encryption computation cost of our scheme are independent with the number of revoked users. In addition, we analyze the security of our scheme with rigorous proofs, and demonstrate the efficiency of our scheme in experiments. Mona Secure Multi-Owner Data Sharing for Dynamic Groups in the Cloud

HARDWARE REQUIREMENT:
  • Speed       –    1 GHz
  • Processor  –    Pentium –IV
  • RAM       –    256 MB (min)
  • Hard Disk      –   20 GB
  • Floppy Drive       –    44 MB
  • Key Board      –    Standard Windows Keyboard
  • Mouse       –    Two or Three Button Mouse
  • Monitor      –    SVGA
SOFTWARE REQUIREMENTS:
  • Operating System : Windows XP.
  • Coding Language : JAVA/JSP
  • Database : MYSQL
  • Server : Apache Tomcat
EXISTING SYSTEM:

Several security schemes for data sharing on untrusted servers have been proposed. In these approaches, data owners store the encrypted data files in untrusted storage and distribute the corresponding decryption keys only to authorized users. Thus, unauthorized users as well as storage servers cannot learn the content of the data files because they have no knowledge of the decryption keys However, the complexities of user participation and revocation in these schemes are linearly increasing with the number of data owners and the number of revoked users, respectively. By setting a group with a single attribute, Lu et al. proposed a secure provenance scheme based on the ciphertext-policy attribute-based encryption technique, which allows any member in a group to share data with others. However, the issue of user revocation is not addressed in their scheme. Yu et al. presented a scalable and fine-grained data access control scheme in cloud computing based on the key policy attribute-based encryption (KP-ABE) technique. Unfortunately, the single owner manner hinders the adoption of their scheme into the case, where any user is granted to store and share data.

PROPOSED SYSTEM:

In this paper, we propose a secure multiowner data sharing scheme, named Mona, for dynamic groups in the cloud. By leveraging group signature and dynamic broadcast encryption techniques, any cloud user can anonymously share data with others. Meanwhile, the storage overhead and encryption computation cost of our scheme are independent with the number of revoked users. In addition, we analyze the security of our scheme with rigorous proofs, and demonstrate the efficiency of our scheme in experiments.

Related Post