Passive IP Traceback Disclosing the Locations of IP Spoofers From Path Backscatter

Abstract

It is long known attackers may use forged source IP address to conceal their real locations. To capture the spoofers, a number of IP traceback mechanisms have been proposed. However, due to the challenges of deployment, there has been not a widely adopted IP traceback solution, at least at the Internet level. As a result, the mist on the locations of spoofers has never been dissipated till now.

This paper proposes passive IP traceback (PIT) that bypasses the deployment difficulties of IP traceback techniques. PIT investigates Internet Control Message Protocol error messages (named path backscatter) triggered by spoofing traffic, and tracks the spoofers based on public available information (e.g., topology). In this way, PIT can find the spoofers without any deployment requirement.

This paper illustrates the causes, collection, and the statistical results on path backscatter, demonstrates the processes and effectiveness of PIT, and shows the captured locations of spoofers through applying PIT on the path backscatter data set

These results can help further reveal IP spoofing, which has been studied for long but never well understood. Though PIT cannot work in all the spoofing attacks, it may be the most useful mechanism to trace spoofers before an Internet-level traceback system has been deployed in real. Passive IP Traceback Disclosing the Locations of IP Spoofers From Path Backscatter

HARDWARE REQUIREMENT:
  • Speed       –    1 GHz
  • Processor      –    Pentium –IV
  • RAM       –    256 MB (min)
  • Hard Disk      –   20 GB
  • Floppy Drive       –    44 MB
  • Key Board      –    Standard Windows Keyboard
  • Mouse       –    Two or Three Button Mouse
  • Monitor      –    SVGA
 SOFTWARE REQUIREMENTS:
  • Operating System        :   Windows XP or Win7
  • Front End                    :   Microsoft Visual Studio .NET 2008
  • Script                         :    C# Script
  • Back End                 :   MS-SQL Server 2005
  • Document             :   MS-Office 2007
Existing System:

Existing methods of the IP marking approach is that routers probabilistically write some encoding of partial path information into the packets during forwarding. A basic technique, the edge sampling algorithm, is to write edge information into the packets. This scheme reserves two static fields of the size of IP address, start and end, and a static distance field in each packet. Each router updates these fields as follows. Each router marks the packet with a probability. When the router decides to mark the packet, it writes its own IP address into the start field and writes zero into the distance field. Otherwise, if the distance field is already zero which indicates its previous router marked the packet, it writes its own IP address into the end field, thus represents the edge between itself and the previous routers.

Previous router doesn’t mark the packet, then it always increments the distance field. Thus the distance field in the packet indicates the number of routers the packet has traversed from the router which marked the packet to the victim. The distance field should be updated using a saturating addition, meaning that the distance field is not allowed to wrap. The mandatory increment of the distance field is used to avoid spoofing by an attacker. Using such a scheme, any packet written by the attacker will have distance field greater than or equal to the length of the real attack path a router false positive if it is in the reconstructed attack graph but not in the real attack graph. Similarly we call a router false negative if it is in the true attack graph but not in the reconstructed attack graph. We call a solution to the IP traceback problem robust if it has very low rate of false negatives and false positives.

Proposed System:

We propose a novel solution, named Passive IP Traceback (PIT), to bypass the challenges in deployment. Routers may fail to forward an IP spoofing packet due to various reasons, e.g., TTL exceeding. In such cases, the routers may generate an ICMP error message (named path backscatter) and send the message to the spoofed source address. Because the routers can be close to the spoofers, the path backscatter messages may potentially disclose the locations of the spoofers. PIT exploits these path backscatter messages to find the location of the spoofers. With the locations of the spoofers known, the victim can seek help from the corresponding ISP to filter out the attacking packets, or take other counterattacks. PIT is especially useful for the victims in reflection based spoofing attacks, e.g., DNS amplification attacks. The victims can find the locations of the spoofers directly from the attacking traffic.

We present PIT, which tracks the location of the spoofers based on path backscatter messages together with the topology and routing information. We discuss how to apply PIT when both topology and routing are known, or only topology is known, or neither are known respectively. We also present two effective algorithms to apply PIT in large scale networks. In the following section, at first we show the statistical results on path backscatter messages. Then we evaluate the two key mechanisms of PIT which work without routing information. At last, we give the tracking result when applying PIT on the path backscatter message dataset: a number of ASes in which spoofers are found.

Related Post