Toward Secure Multikeyword Top-k Retrieval over Encrypted Cloud Data

Abstract

Cloud computing has emerging as a promising pattern for data outsourcing and high quality data services. However, concerns of sensitive information on cloud potentially cause privacy problems. Data encryption protects data security to some extent, but at the cost of compromised efficiency. Searchable symmetric encryption (SSE) allows retrieval of encrypted data over cloud. In this paper, we focus on addressing data privacy issues using searchable symmetric encryption (SSE). For the first time, we formulate the privacy issue from the aspect of similarity relevance and scheme robustness. We observe that server-side ranking based on order-preserving encryption (OPE) inevitably leaks data privacy.

In this paper, for the first time, we define and solve the challenging problem of privacy-preserving multi-keyword ranked search over encrypted cloud data (MRSE), and establish a set of strict privacy requirements for such a secure cloud data utilization system to become a reality. Among various multi-keyword semantics, we choose the efficient principle of “coordinate matching”, i.e., as many matches as possible, to capture the similarity between search query and data documents, and further use “inner product similarity” to quantitatively formalize such principle for similarity measurement. We first propose a basic MRSE scheme using secure inner product computation, and then significantly improve it to meet different privacy requirements in two levels of threat models. Thorough analysis investigating privacy and efficiency guarantees of proposed schemes is given, and experiments on the real-world dataset further show proposed schemes indeed introduce low overhead on computation and communication. Toward Secure Multikeyword Top-k Retrieval over Encrypted Cloud Data

HARDWARE & SOFTWARE REQUIREMENTS
HARDWARE REQUIREMENT:
  • Speed       –    1 GHz
  • Processor     –    Pentium –IV
  • RAM       –    256 MB (min)
  • Hard Disk      –   20 GB
  • Floppy Drive       –    44 MB
  • Key Board      –    Standard Windows Keyboard
  • Mouse       –    Two or Three Button Mouse
  • Monitor              –    SVGA
SOFTWARE REQUIREMENTS
  • Operating System        :           Windows XP
  • Front End       :           Visual Studio 2008 .NET
  • Scripts                                    :           C# Script.
  • Database      :           SQL Server 2005
ExistingSystem

The large number of data users and documents in cloud, it is crucial for the search service to allow multi-keyword query and provide result similarity ranking to meet the effective data retrieval need. The searchable encryption focuses on single keyword search or Boolean keyword search, and rarely differentiates the search results.

Two-round searchable encryption (TRSE) scheme that supports top-k multikey word retrieval in TRSE, we employ a vector space model and homomorphic encryption. The vector space model helps to provide sufficient search accuracy, and the homomorphic encryption enables users to involve in the ranking while the majority of computing work is done on the server side by operations only on ciphertext. As a result, information leakage can be eliminated and data security is ensured. Thorough security and performance analysis show that the proposed scheme guarantees high security and practical efficiency.

PROPOSED SYSTEM:

We define and solve the challenging problem of privacy-preserving multi-keyword ranked search over encrypted cloud data (MRSE), and establish a set of strict privacy requirements for such a secure cloud data utilization system to become a reality. Among various multi-keyword semantics, we choose the efficient principle of “coordinate matching”.

We propose a basic idea for the MRSE using secure inner product computation, which is adapted from a secure k-nearest neighbor (kNN) technique, and then give two significantly improved MRSE schemes in a step-by-step manner to achieve various stringent privacy requirements in two threat models with increased attack capabilities.

Related Post