We consider the problem of extracting blindly data embedded over a wide band in a spectrum (transform) domain of a digital medium (image, audio, and video). We develop a novel multicarrier/ signature iterative generalized least-squares (M-IGLS) core procedure to seek unknown data hidden in hosts via multicarrier spread-spectrum embedding. Neither the original host nor the embedding carriers are assumed available. Experimental studies on images show that the developed algorithm can achieve recovery probability of error close to what may be attained with known embedding carriers and host autocorrelation matrix. Extracting Spread-Spectrum Hidden Data from Digital Media
In the existing system reversible data hiding technique the image is compressed and encrypted by using the encryption key and the data to hide is embedded in to the image by using the same encryption key. The user who knows the secret encryption key used can access the image and decrypt it after extracting or removing the data hidden in the image. After extracting the data hidden in the image then only can be the original image is retrieved.
We propose the information hiding concept to reduce the risk of using cryptographic algorithms alone. Data hiding techniques embed information into another medium making it imperceptible to others, except for those that are meant to receive the hidden information and are aware of it presence. It focuses on methods of hidden data in which cryptographic algorithms are combined with the information hiding techniques to increase the security of transmitted data. We focus our attention on the blind recovery of secret data hidden in medium hosts via multi-carrier/signature direct-sequence spread-spectrum transform domain embedding