Data Leakage Detection

Abstract

A data distributor has given sensitive data to a set of supposedly trusted agents (third parties). Some of the data is leaked and found in an unauthorized place (e.g., on the web or somebody’s laptop). The distributor must assess the likelihood that the leaked data came from one or more agents, as opposed to having been independently gathered by other means. We propose data allocation strategies (across the agents) that improve the probability of identifying leakages. These methods do not rely on alterations of the released data (e.g., watermarks). In some cases we can also inject “realistic but fake” data records to further improve our chances of detecting leakage and identifying the guilty party. Data Leakage Detection

HARDWARE & SOFTWARE REQUIREMENTS:
HARDWARE REQUIREMENTS:
  • System : Pentium IV 2.4 GHz
  • Hard Disk :           40 GB
  • Floppy Drive : 44 MB
  • Monitor : 15 VGA colour
  • Mouse : Logitech
  • Keyboard :           110 keys enhanced.
  • RAM : 256 MB
SOFTWARE REQUIREMENTS:
  • Operating system      :  Windows XP.
  • Coding Language      :  Asp .Net with C#
  • Data Base      : SQL Server 2005    
EXISTING SYSTEM:

Traditionally, leakage detection is handled by watermarking, e.g., a unique code is embedded in each distributed copy. If that copy is later discovered in the hands of an unauthorized party, the leaker can be identified. Watermarks can be very useful in some cases, but again, involve some modification of the original data. Furthermore, watermarks can sometimes be destroyed if the data recipient is malicious. E.g. A hospital may give patient records to researchers who will devise new treatments. Similarly, a company may have partnerships with other companies that require sharing customer data. Another enterprise may outsource its data processing, so data must be given to various other companies. We call the owner of the data the distributor and the supposedly trusted third parties the agents.

PROPOSED SYSTEM:

Our goal is to detect when the distributor’s sensitive data has been leaked by agents, and if possible to identify the agent that leaked the data. Perturbation is a very useful technique where the data is modified and made “less sensitive” before being handed to agents. we develop unobtrusive techniques for detecting leakage of a set of objects or records.

In this section we develop a model for assessing the “guilt” of agents. We also present algorithms for distributing objects to agents, in a way that improves our chances of identifying a leaker. Finally, we also consider the option of adding “fake” objects to the distributed set. Such objects do not correspond to real entities but appear realistic to the agents. In a sense, the fake objects acts as a type of watermark for the entire set, without modifying any individual members. If it turns out an agent was given one or more fake objects that were leaked, then the distributor can be more confident that agent was guilty.

Related Post